BrightChamps Logo
Login

Summarize this article:

Live Math Learners Count Icon105 Learners

Last updated on September 15, 2025

Derivative of 3e^2x

Professor Greenline Explaining Math Concepts

We use the derivative of 3e^2x, which is 6e^2x, as a tool to measure how the exponential function changes in response to a slight change in x. Derivatives help us calculate profit or loss in real-life situations. We will now talk about the derivative of 3e^2x in detail.

Derivative of 3e^2x for US Students
Professor Greenline from BrightChamps

What is the Derivative of 3e^2x?

We now understand the derivative of 3e^2x. It is commonly represented as d/dx (3e^2x) or (3e^2x)', and its value is 6e^2x. The function 3e^2x has a clearly defined derivative, indicating it is differentiable within its domain. The key concepts are mentioned below:

 

Exponential Function: The general form of an exponential function is ae^bx, where a and b are constants.

 

Chain Rule: A rule for differentiating composite functions, such as 3e^2x.

 

Constant Multiple Rule: If a function is multiplied by a constant, its derivative is the constant multiplied by the derivative of the function.

Professor Greenline from BrightChamps

Derivative of 3e^2x Formula

The derivative of 3e^2x can be denoted as d/dx (3e^2x) or (3e^2x)'.

 

The formula we use to differentiate 3e^2x is: d/dx (3e^2x) = 6e^2x

 

The formula applies to all x, as exponential functions are defined for all real numbers.

Professor Greenline from BrightChamps

Proofs of the Derivative of 3e^2x

We can derive the derivative of 3e^2x using proofs. To show this, we will use the rules of differentiation. There are several methods we use to prove this, such as:

 

  1. Using the Chain Rule
  2. Using the Constant Multiple Rule

 

We will now demonstrate that the differentiation of 3e^2x results in 6e^2x using these methods:

 

Using the Chain Rule

 

To prove the differentiation of 3e^2x using the chain rule, We use the formula: 3e^2x = 3 * e^(2x)

 

Let u = 2x, then the outer function becomes 3e^u. By the chain rule: d/dx [3e^u] = 3e^u * du/dx

 

Since du/dx = 2 (as the derivative of 2x is 2), d/dx (3e^2x) = 3e^(2x) * 2 = 6e^2x

 

Using the Constant Multiple Rule

 

We will now prove the derivative of 3e^2x using the constant multiple rule. The step-by-step process is demonstrated below:

 

Here, we use the formula, 3e^2x = 3 * e^(2x) By the constant multiple rule, the derivative of a constant times a function is the constant times the derivative of the function.

 

Thus, d/dx (3e^2x) = 3 * d/dx (e^(2x)) = 3 * 2e^(2x) (since the derivative of e^(2x) is 2e^(2x)) = 6e^2x

Professor Greenline from BrightChamps

Higher-Order Derivatives of 3e^2x

When a function is differentiated several times, the derivatives obtained are referred to as higher-order derivatives. Higher-order derivatives can be a little tricky.

 

To understand them better, think of a car where the speed changes (first derivative) and the rate at which the speed changes (second derivative) also changes. Higher-order derivatives make it easier to understand functions like 3e^2x.

 

For the first derivative of a function, we write f′(x), which indicates how the function changes or its slope at a certain point. The second derivative is derived from the first derivative, which is denoted using f′′(x). Similarly, the third derivative, f′′′(x) is the result of the second derivative and this pattern continues.

 

For the nth Derivative of 3e^2x, we generally use f⁽ⁿ⁾(x) for the nth derivative of a function f(x) and the pattern follows the same multiplicative structure for exponential functions.

Professor Greenline from BrightChamps

Special Cases:

Exponential functions like 3e^2x do not have any points of discontinuity or undefined points within the domain of real numbers.

Max Pointing Out Common Math Mistakes

Common Mistakes and How to Avoid Them in Derivatives of 3e^2x

Students frequently make mistakes when differentiating 3e^2x. These mistakes can be resolved by understanding the proper solutions. Here are a few common mistakes and ways to solve them:

Mistake 1

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not applying the Chain Rule

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Students may forget to apply the chain rule when differentiating composite exponential functions like 3e^2x. This often leads to incorrect results. Ensure that you apply the chain rule correctly by identifying the inner function and differentiating it separately.

Mistake 2

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Forgetting the Constant Multiple

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Another common mistake is forgetting to multiply by the constant when differentiating. For example, students might incorrectly write d/dx (3e^2x) = 2e^2x. Always remember to include the constant multiplier in the differentiation process.

Mistake 3

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Confusion with Exponential Derivatives

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Students sometimes confuse the derivative of e^x with the derivative of e^(2x). Remember that the derivative of e^(bx) is b * e^(bx). This keeps the process clear and accurate.

Mistake 4

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Ignoring the Exponential Identity

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

While differentiating, students might overlook the identity that the derivative of e^x is e^x itself, leading to errors. Make sure to consistently apply this identity when differentiating exponential functions.

Mistake 5

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Incorrectly Applying Product Rule

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Since 3e^2x is not a product of two functions, applying the product rule here would be incorrect. Students should recognize that this function requires the chain rule, not the product rule.

arrow-right
Max from BrightChamps Saying "Hey"
Hey!

Examples Using the Derivative of 3e^2x

Ray, the Character from BrightChamps Explaining Math Concepts
Max, the Girl Character from BrightChamps

Problem 1

Calculate the derivative of 3e^2x * sin(x).

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Here, we have f(x) = 3e^2x * sin(x).

 

Using the product rule, f'(x) = u′v + uv′ In the given equation, u = 3e^2x and v = sin(x).

 

Let’s differentiate each term, u′= d/dx (3e^2x) = 6e^2x v′= d/dx (sin(x)) = cos(x)

 

substituting into the given equation, f'(x) = (6e^2x) * sin(x) + (3e^2x) * cos(x)

 

Let’s simplify terms to get the final answer, f'(x) = 6e^2x * sin(x) + 3e^2x * cos(x)

 

Thus, the derivative of the specified function is 6e^2x * sin(x) + 3e^2x * cos(x).

Explanation

We find the derivative of the given function by dividing the function into two parts. The first step is finding its derivative and then combining them using the product rule to get the final result.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 2

A company is analyzing the growth of their investment using the function y = 3e^2x, where y represents the value of the investment at time x. If x = 1 year, calculate the rate of growth of the investment.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

We have y = 3e^2x (value of the investment)...(1)

 

Now, we will differentiate the equation (1) Take the derivative 3e^2x: dy/dx = 6e^2x

 

Given x = 1 (substitute this into the derivative) dy/dx = 6e^2(1) = 6e^2

 

Hence, the rate of growth of the investment at time x = 1 year is 6e^2.

Explanation

We find the rate of growth of the investment at x = 1 year as 6e^2, which represents how fast the investment value is increasing at that specific time.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 3

Derive the second derivative of the function y = 3e^2x.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

The first step is to find the first derivative, dy/dx = 6e^2x...(1)

 

Now we will differentiate equation (1) to get the second derivative: d²y/dx² = d/dx [6e^2x]

 

Since the derivative of e^2x is 2e^2x, d²y/dx² = 6 * 2e^2x = 12e^2x

 

Therefore, the second derivative of the function y = 3e^2x is 12e^2x.

Explanation

We use the step-by-step process, where we start with the first derivative. We then differentiate again to find the second derivative, demonstrating the calculation of higher-order derivatives.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 4

Prove: d/dx ((3e^2x)²) = 12e^2x * (3e^2x).

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Let’s start using the chain rule: Consider y = (3e^2x)²

 

To differentiate, we use the chain rule: dy/dx = 2(3e^2x) * d/dx [3e^2x]

 

Since the derivative of 3e^2x is 6e^2x, dy/dx = 2(3e^2x) * 6e^2x = 12e^2x * (3e^2x)

 

Hence proved.

Explanation

In this step-by-step process, we used the chain rule to differentiate the equation. Then, we replace 3e^2x with its derivative. As a final step, we substitute y = (3e^2x)² to derive the equation.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 5

Solve: d/dx (3e^2x/x).

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

To differentiate the function, we use the quotient rule: d/dx (3e^2x/x) = (d/dx (3e^2x) * x - 3e^2x * d/dx(x))/x²

 

We will substitute d/dx (3e^2x) = 6e^2x and d/dx (x) = 1 = (6e^2x * x - 3e^2x * 1) / x² = (6xe^2x - 3e^2x) / x²

 

Therefore, d/dx (3e^2x/x) = (6xe^2x - 3e^2x) / x²

Explanation

In this process, we differentiate the given function using the product rule and quotient rule. As a final step, we simplify the equation to obtain the final result.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Ray Thinking Deeply About Math Problems

FAQs on the Derivative of 3e^2x

1.Find the derivative of 3e^2x.

Using the chain rule on 3e^2x gives: d/dx (3e^2x) = 6e^2x (simplified)

Math FAQ Answers Dropdown Arrow

2.Can we use the derivative of 3e^2x in real life?

Yes, we can use the derivative of 3e^2x in real life to model growth rates in investments, populations, and other exponential processes.

Math FAQ Answers Dropdown Arrow

3.Do exponential functions like 3e^2x have any undefined points?

No, exponential functions like 3e^2x are defined for all real numbers and do not have any undefined points.

Math FAQ Answers Dropdown Arrow

4.What rule is used to differentiate 3e^2x/x?

We use the quotient rule to differentiate 3e^2x/x, d/dx (3e^2x/x) = (x * 6e^2x - 3e^2x * 1) / x².

Math FAQ Answers Dropdown Arrow

5.Are the derivatives of 3e^2x and 3e^x the same?

No, they are different. The derivative of 3e^2x is 6e^2x, while the derivative of 3e^x is 3e^x.

Math FAQ Answers Dropdown Arrow
Professor Greenline from BrightChamps

Important Glossaries for the Derivative of 3e^2x

  • Derivative: The derivative of a function indicates how the given function changes in response to a slight change in x.

 

  • Exponential Function: A function of the form ae^(bx), where a and b are constants, and e is the base of natural logarithms.

 

  • Chain Rule: A rule used in calculus to differentiate the composition of two or more functions.

 

  • Constant Multiple Rule: A rule stating that the derivative of a constant multiplied by a function is the constant multiplied by the derivative of the function.

 

  • Quotient Rule: A rule used to differentiate functions that are divided by each other.
Math Teacher Background Image
Math Teacher Image

Jaskaran Singh Saluja

About the Author

Jaskaran Singh Saluja is a math wizard with nearly three years of experience as a math teacher. His expertise is in algebra, so he can make algebra classes interesting by turning tricky equations into simple puzzles.

Max, the Girl Character from BrightChamps

Fun Fact

: He loves to play the quiz with kids through algebra to make kids love it.

INDONESIA - Axa Tower 45th floor, JL prof. Dr Satrio Kav. 18, Kel. Karet Kuningan, Kec. Setiabudi, Kota Adm. Jakarta Selatan, Prov. DKI Jakarta
INDIA - H.No. 8-2-699/1, SyNo. 346, Rd No. 12, Banjara Hills, Hyderabad, Telangana - 500034
SINGAPORE - 60 Paya Lebar Road #05-16, Paya Lebar Square, Singapore (409051)
USA - 251, Little Falls Drive, Wilmington, Delaware 19808
VIETNAM (Office 1) - Hung Vuong Building, 670 Ba Thang Hai, ward 14, district 10, Ho Chi Minh City
VIETNAM (Office 2) - 143 Nguyễn Thị Thập, Khu đô thị Him Lam, Quận 7, Thành phố Hồ Chí Minh 700000, Vietnam
UAE - BrightChamps, 8W building 5th Floor, DAFZ, Dubai, United Arab Emirates
UK - Ground floor, Redwood House, Brotherswood Court, Almondsbury Business Park, Bristol, BS32 4QW, United Kingdom